krom schroder

Solenoid Valves for gas VG

Fig. 1

Fig. 2

Solenoid Valves for gas or air VG .

// Operating pressures
2 psig (130 mbar)
5 psig (360 mbar)
// Designed for continous on-off cycling
// Designed for maintenance free operation
// Fast or slow opening
// Gas flow adjustable from 10% to 100% of its rated capacity
// Due to d.c. - coil-system overheating of the coil is not possible
// Kromschröder is a company certified to ISO 9001

Application

FM approved as a shut-off valve to control or modulate the fluid flow rate.
UL listed as shut-off valve actuated by a safety control or an emergency device to prevent the unsafe delivery or a fluid. It may be used also as a general purpose valve.
CSA certified as an electromagnetically operated valve.
CGA approved as an automatic fail-safe shut-off valve.

Technical Description

Valve with spring-loaded valve disk, normally closed.
Valve housing: Die cast aluminium
Female thread: NPT
Flange: ASA
O-rings: Buna N (NBR)
Valve disk seal: Buna N (NBR)
Type of gas: natural gas, LPG and air
Max. operating pressure:
See specification table
Flow rate: Refer to flow diagram or specification table
Opening time:
VG..N: fast opening approx. $<0.5 \mathrm{~s}$
VG..L: slow opening adjustable from 0.5 s
to approx. 10 s
Closing time VG..N, VG ..L: < 1 s
Switching frequency:
VG..N: 60 per minute
VG..L: 6 per minute with full reproducibility of the damping unit
Operating Cycles: 2.000.000
Voltage for power supply:
120 V AC $+10 /-15 \%, 50 / 60 \mathrm{~Hz}$.
Solenoids are operated with D.C. coils, with a full wave rectifier circuit located in valve terminal box.
There are two grounding screws in the terminal box.
Power factor of solenoid coil: $\operatorname{cos.} \varphi=1$
The electrical rating as per specification table is the same during start-up or continuous operation.

Duty cycle: continuous
Conduit connection: 1/2" NPT
Terminal: Maximum 14 gauge wire size
Typ of enclosure: NEMA 3
Flow rate is adjustable from 10 to 100% of the rate rated capacity by rotating a socket head screw located on the bottom of the valve body.
Ambient temperature: max. $-4^{\circ} \mathrm{F}\left(-20^{\circ} \mathrm{C}\right)$ to $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right) \mathrm{CSA}$ approved up to $140^{\circ} \mathrm{F}$ ($60^{\circ} \mathrm{C}$).

Model VG 15-40/32 (Fig. 1)

Pressure taps $1 / 4$ " NPT are located on both sides at outlet end of valve Built-in brass strainer.
Limiting orifice material: polyacetate
Model VG 40-100 (Fig. 2)
Pressure taps $1 / 4$ " NPT are located on both sides at inlet and outlet. Built-in stainless steel strainer.
Limiting orifice material: galvanized steel

Valve options

VG . . N fast opening
VG . . L with damping unit, slow opening
VG . . D with limiting orifice
VG . . S with closed position indicator
VG 40-100 for visual indicator assembly

Setting of initial gas flow with

VG..L
Adjustable from 0-70 \% of the flow rate (at $=\Delta p=0.4$ inch WC [1 mbar]).
The initial gas flow rate is not set at the factory. The damping unit is fully adjustable as shown in Fig. 3.

Closed position indicator only for

VG . . S (Fig. 4).
These types are equipped with a two pole micro-switch to indicate closed position. The switch has been factory adjusted and tested.
Wiring for switch by GDM connector-conduit connection: $1 / 2^{\prime \prime}$ NPT or cable gland for multi-conductor cable.
Connected loads: 60 to $250 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$. Max. load: 2 A
Visual indicator VG . . I (Fig. 5)
For assembly with VG 40-100 fast and slow opening by $1 / 2^{\prime \prime}$ thread in bottom of the valve.
Not in connection with limiting orifice and closed position indicator.

Installation (Fig. 6)

Watch flow direction. The valves are designed for flow in one direction only. Coil must be in horizontal or vertical position. Do not locate coil below horizontal position. When installing the valves, don't use coil housing as levers. Use suitable wrenches.
For other than standard $120 \mathrm{~V} \mathrm{AC}, 50 / 60 \mathrm{~Hz}$ systems consult Kromschröder Inc. for details

Fig. 3

Fig. 5

Fig. 6

To correct for any conditions:

Flows in the table are at $60^{\circ} \mathrm{F}$, seal level (14.7 PSIA), with a supply pressure to the orifice of 1 PSIA. To correct for other conditions, use the following formula:

Corrected Flow =

Flow
From
Table
$\frac{460^{\circ}+{ }^{\circ} \mathrm{F}}{520}$$\frac{1}{\text { S.G. }} \frac{\mathrm{PSIA}+\mathrm{PSIG}}{15.7}$

Correction Factors

To correct for specific gravity ONLY:

Multiply the flow from the table by:

Air,	$1.00 \mathrm{s.g}$.774
Propane,	$1.56 \mathrm{s.g}$.620
Butane,	$2.00 \mathrm{s.g}$.547

Use these figures to estimate barometric pressure at various altitudes:
Sea Level 14.7 PSIA 1000' 14.2 PSIA
2000' 13.7 PSIA
3000' 13.2 PSIA
4000 \quad 12.7 PSIA
5000 \quad 12.2 PSIA
6000' 11.8 PSIA
7000 \quad 11.3 PSIA

Type code

Size $=15,20,25,40 / 32,40,50,65,80,100$
Connection: NPT-thread $=\mathrm{N}$, flange $=\mathrm{A}$
max. inlet pressure $0,1 / 0,2=2$ psig (130 mbar)
$0,3=5 \mathrm{psig}$ (360 mbar)
with damping unit $=\mathrm{L}$, without damping unit $=\mathrm{N}$
with maximum flow-limiting orifice $=\mathrm{D}^{*}$
with closed position indicator $=S^{*}$
Terminal box metal = 9
pressure taps at the outlet $=2$, pressure taps at inlet and outlet $=3$
*If not applicable this letter is omitted, i. e. the next letter moves one up.
We reserve the right to make technical changes designed to improve our products without prior notice.

() = Version with L damping unit Version with closed position indicator

